- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Wang, Xiangrong (2)
-
Alsafi, Paniz (1)
-
Amin, Moeness G (1)
-
Liu, Hengfeng (1)
-
Moreno, Yamir (1)
-
Tejedor, Alejandro (1)
-
Wang, Yi (1)
-
Zoubir, Abdelhak M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The impact of aspect angle on Doppler effect hinders the capability of a monostatic radar to achieve human activity recognition (HAR) from all aspect angles, i.e., omnidirectional. To alleviate the “angle sensitivity”, sufficient and high-quality training data from multiple aspect angles is mandated. However, it would be time-consuming for the monostatic radar to collect the training data from all aspect angles. To address this issue, this paper proposes a high-quality synthetic data generation algorithm based on high-dimensional model representation (HDMR) for omnidirectional HAR. The aim is to augment a high-quality dataset with collected samples at the radar line-of-sight direction and few samples from other aspect angles. The quality of synthetic samples is evaluated by dynamic time wrapping distance (DTWD) between the synthetic and real samples. Subsequently, the synthetic samples are utilized to train a classifier based on ResNet50 to achieve omnidirectional HAR. Experimental results demonstrate that the averaged HAR accuracy of the proposed algorithm exceeds 91% at different aspect angles. The quality of the synthetic samples generated by the proposed algorithm outperforms two commonly-used algorithms in the literature.more » « lessFree, publicly-accessible full text available May 3, 2026
-
Wang, Xiangrong; Tejedor, Alejandro; Wang, Yi; Moreno, Yamir (, New Journal of Physics)Abstract The multilayer network framework has served to describe and uncover a number of novel and unforeseen physical behaviors and regimes in interacting complex systems. However, the majority of existing studies are built on undirected multilayer networks while most complex systems in nature exhibit directed interactions. Here, we propose a framework to analyze diffusive dynamics on multilayer networks consisting of at least one directed layer. We rigorously demonstrate that directionality in multilayer networks can fundamentally change the behavior of diffusive dynamics: from monotonic (in undirected systems) to non-monotonic diffusion with respect to the interlayer coupling strength. Moreover, for certain multilayer network configurations, the directionality can induce a unique superdiffusion regime for intermediate values of the interlayer coupling, wherein the diffusion is even faster than that corresponding to the theoretical limit for undirected systems, i.e. the diffusion in the integrated network obtained from the aggregation of each layer. We theoretically and numerically show that the existence of superdiffusion is fully determined by the directionality of each layer and the topological overlap between layers. We further provide a formulation of multilayer networks displaying superdiffusion. Our results highlight the significance of incorporating the interacting directionality in multilevel networked systems and provide a framework to analyze dynamical processes on interconnected complex systems with directionality.more » « less
An official website of the United States government
